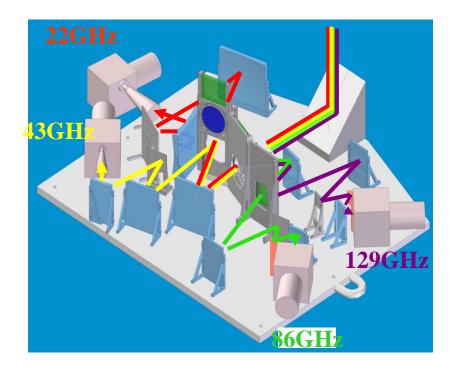
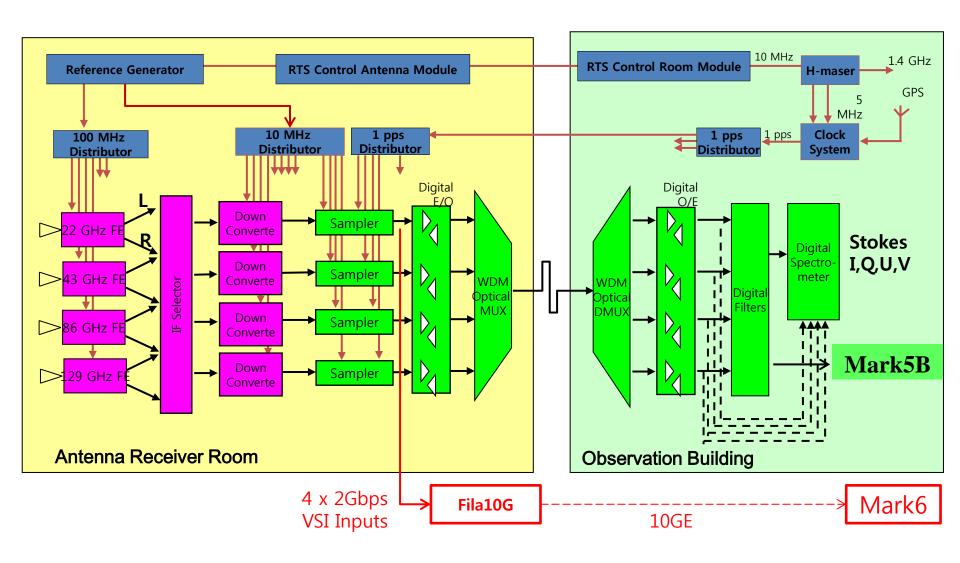

Recent Results of KVN Multi-Frequency Observations

Do-Young Byun (KASI)
Florence ERATEC Workshop 2015

Outline

- Introduction to KVN
- Observational Results
 - Evolved Stars
 - AGN monitoring
- Upgrade Activities & Future Prospect

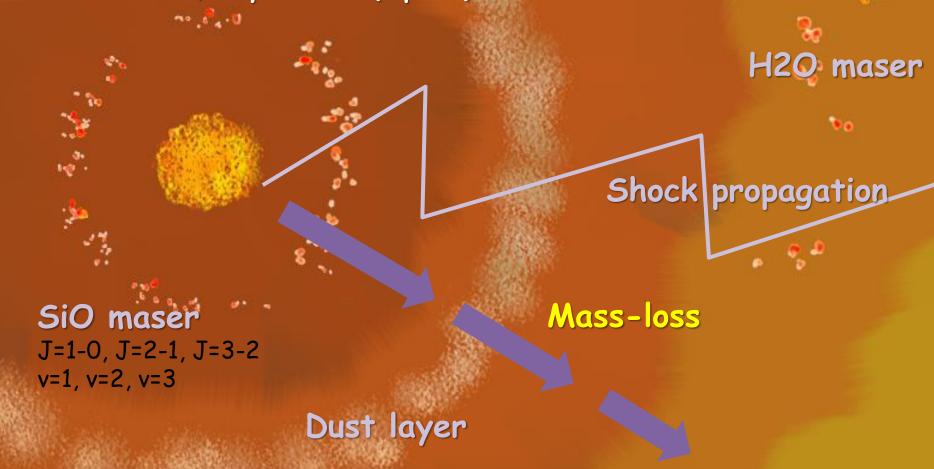



Multi-Frequency Receiving System of KVN

- Simultaneous Multi-frequency Observation
 - @ 22/43/86/129GHz (Aperture Efficiencies: 60 30%)
 - integration time > 5 min @ 130GHz
- Dual Pol : LCP & RCP
 - Simultaneous 2 bands w/ full stokes

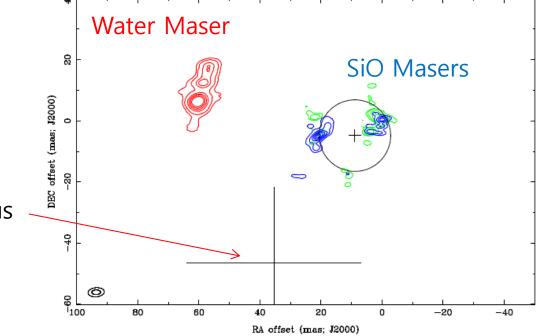
KVN Data Acquisition System

Science Cases using KVN Multi-Freq. Capability


- Weak sources at high frequency (> 86GHz)
- Chromatic Astrometry using SFPR
 - AGN Core Shift (Rioja+ 2015, Zhao+ in prep)
 - Registration of multi-transition masers
 - : Water + SiO Masers of Evolved Stars
 - : Water + 44G Methanol Masers of Massive SFRs
- AGN Jets
 - Spectral Index Distribution
 - Faraday Rotation (Polarization)

KVN Key Science Projects

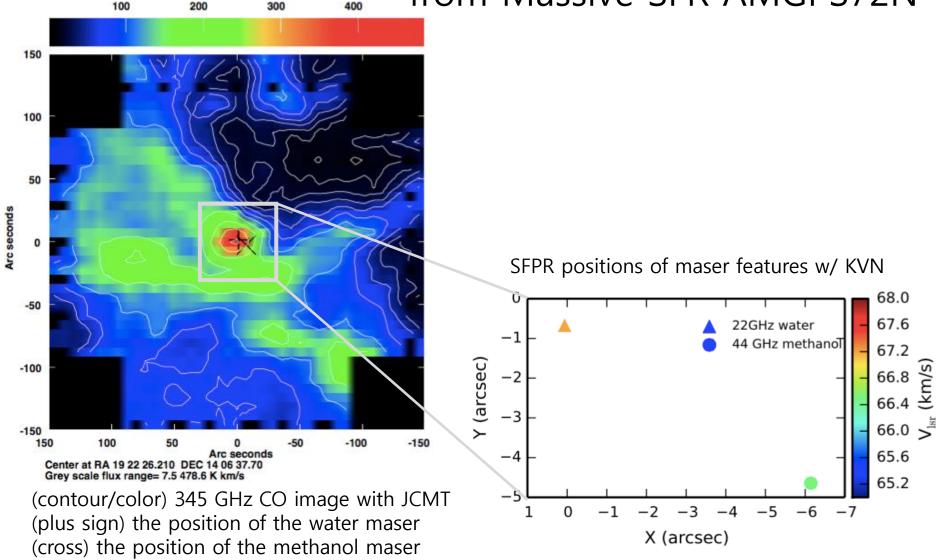
- KVN 4 band monitoring of Evolved Stars
- Interferometric MOnitoring of GAmma-ray Bright Agn (iMOGABA)
- Started in 2014
 - 3-year term, ~300h / yr
- Multi-frequency Agn Survey with the KVN (MASK): See Taehyun Jung's talk


KSP 1: KVN 4 band monitoring of Evolved Stars

- 15 Late-type stars (from AGB to PPN); Se-Hyung Cho +
 - Stellar pulsation → shock wave → mass-loss
 - Physical Properties and Dynamical Variation of inner and outer region
 - Mass Loss, Asymmetric (Bipolar) Structure

Demonstration of SFPR for Stellar Maser Lines

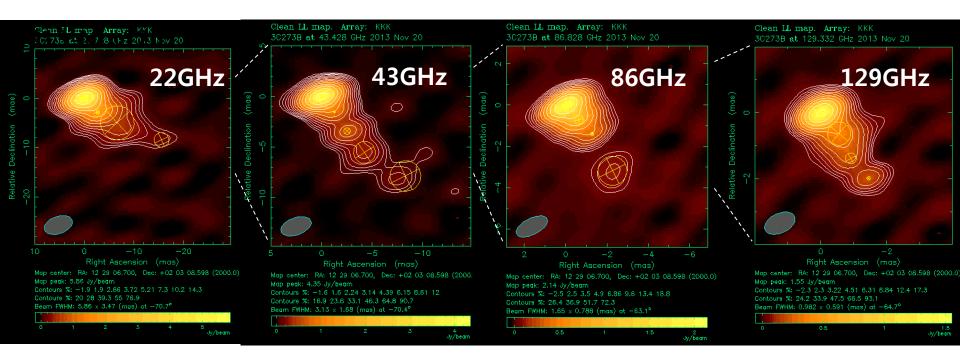
- Richard Dodson+, 2014, AJ
- R LMi (obs. : 2011)
 - H₂O at 22GHz and SiO (v=1,v=2) at 43GHz
 - Reference: 4C39.25 ~ 6 deg away
 - T (2min) R (2min) T(2min) R (2min)
- mas-level astrometric alignment of SiO maser wrt H₂O maser



Position from Hipparcus

Successful SFPR Maps of H₂O and SiO Masers

- H2O and SiO J=1-0 Maps of V1111 Oph and VX Sgr
- First 4 band SFPR Map of VY CMa


SFPR between H₂O and 44GHz CH₃OH masers from Massive SFR AMGPS72N

by Kim, M.-K.

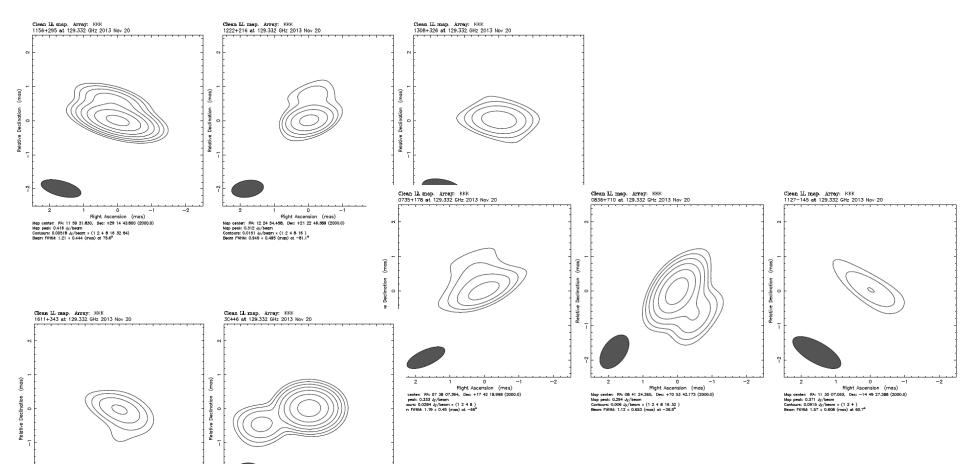
KSP2: iMOGABA

(Interferometric MOnitoring of GAmma-ray Bright AGN)

- PI: Sang-Sung Lee
- Orion of gamma-ray flares in AGN
- Monthly VLBI monitoring of ~30 AGN with 4 frequency bands
 - Snap Shot Imaging: 5-min scan, 2-10 scans / source
- Complementary to VLBA monitoring at 15 & 43GHz (MOJAVE , BU)

129GHz Imaging

- Frequency Phase Transfer for iMOGABA (Algaba JKAS submitted)
 - 12 sources were failed in imaging by conventional method
 - $1 \sigma \sim 100 \text{ mJy} @ 129 \text{GHz} (t=30 \text{ sec}, BW = 64 \text{MHz})$

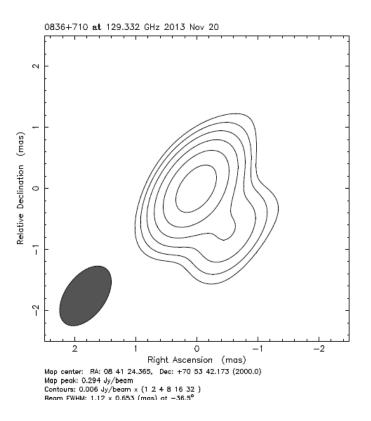

iMOGABA9 Expected Detection Limits at 129 GHz

Obs. 2013 Nov

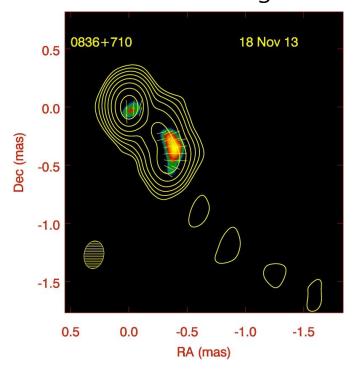
Source	SEFD (Jy)	S^{129} (mJy)	SNR_{30s}^{129}	SNR_{300s}^{129}
0235 + 164	5600	260	3	8
0528 + 134	5300	300	3	10
0735 + 178	5900	380	4	11
0827 + 243	8000	100	1	2
0836 + 710	6100	270	2	8
1127 - 145	8000	750	5	16
1156 + 295	5100	500	5	17
1222 + 216	5300	340	3	11
1308 + 326	5900	360	3	11
1343 + 451	5300	90	1	3
1611 + 343	5900	540	5	16
3C446	5100	250	3	8

Imaging after FPT

Success for 8 Sources w/ t=300s after FPT


Right Ascension (mas)

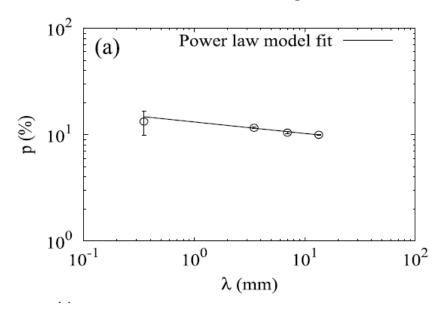
Nap center: PA: 18 13 41.084, Dec: +34 12 47.909 (2000.0) Nap pedic 0.534 Jy/beom Contours: 0.0591 Jy/beom x (1 2 + 8) Beom FRHM: 1.08 x 0.506 (max) at 71.8° Right Ascension (mas)

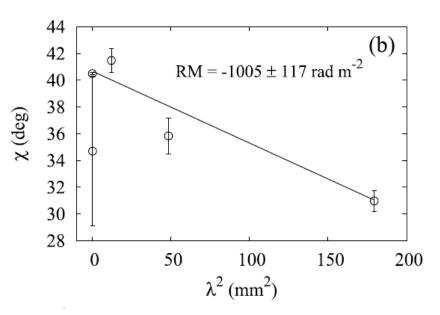

Map center: RA: 22 25 47.259, Dec: -04 57 01.391 (2000.0) Map peak: 0.284 Jy/bearn Contours: 0.003 Jy/bearn x (1 2 4 8 16 32 64) Beam FWHM: 0.904 x 0.655 (mos) at 88.7°

Comparison of Images

iMOGABA FPT 129GHz

BU VLBA Monitoring 43GHz


iMOGABA9 Expected Detection Limits at 129 GHz


Source	SEFD (Jy)	S^{129} (mJy)	SNR_{30s}^{129}	SNR_{300s}^{129}	
0235 + 164	5600	260	3	8	failed
0528 + 134	5300	300	3	10	
0735 + 178	5900	380	4	11	
0827 + 243	8000	100	1	2	
0836 + 710	6100	270	2	8	
1127 - 145	8000	750	5	16	
1156 + 295	5100	500	5	17	
1222 + 216	5300	340	3	11	
1308 + 326	5900	360	3	11	
1343 + 451	5300	90	1	3	
1611 + 343	5900	540	5	16	
3C446	5100	250	3	8	

iMOGGABA9 provides 129GHz images for 26 sources among 30. FPT enables us to extend integration time at least up to 300 sec.

SD Polarizations w/ KVN & CSO

- Lee + (2015 ApJL)
 - 3C279
 - CSO (350 μ m)
 - KVN (3.5, 7, 14mm) YS & US
 - Fractional Linear Polarizations
 - Polarization Angles → RM

Upgrade Activities

- Wide Bandwidth & full stokes of 4 bands
 - 4 x 2Gbps operation from 2016
 - New digital backend with > 32Gbps
- More Stable Instrumental Phase
 - New HVAC System (∆T in Rx Room ~ 0.1K)
 - Multi-Frequency P-Cal (See Taehyun Jung's talk)

Future Prospect

- Collaboration for Multi-Frequency Operation
 - VERA Miz (& Iriki), Yebes 40m, ATCA sub array,
 Sejong 22m (See Richard's Talk)
- Multi-Frequency + High Speed ADC & Recorder
 - New Digital Backend : DBBC3, RDBE, OCTAD
 - Much higher sensitivity at (sub) mm wave
 - SFPR + Polarization

Summary

- 2 KSPs using Multi-Frequency Capability
 - 4-band monitoring of Evolved Star
 - AGN Monitoring (iMOGABA)
- SFPR technique are successfully applied to both continuum and maser sources
 - First 4 bands overlap image (VY-CMa)
- Collaboration for Multi-Frequency Capability
 - VERA Miz & Iriki, Yebes 40m, ATCA sub array,
 Sejong 22m